

trum); 4.72 (2 H, $\text{CF}(\text{NO}_2)\text{CH}_2$, AB is the portion of the ABX spectrum); 4.75 (s, 2 H, OCH_2O). IR, ν/cm^{-1} : 653 (NO_2); 800, 851 (C—N); 1052 (C—F and C—O); 1130 (C—O); 1223 (C—O) from $-\text{C}(\text{O})-\text{O}$; 1316, 1580 (C—NO₂ from $\text{FC}(\text{NO}_2)$; 1607 (C—NO₂) from $\text{FC}(\text{NO}_2)_2-$; 1760 (C=O); 1415, 1454, 2915, 2960 (CH_2).

Under identical conditions, ether 5 (colorless oil, n_{D}^{20} 1.4508) forms from 2 and NH_2OH in a yield of ~48 %. Found (%): C, 21.64; H, 2.50; F, 13.76; N, 15.09. $\text{C}_5\text{H}_7\text{F}_2\text{N}_3\text{O}_8$. Calculated (%): C, 21.82; H, 2.55; F, 13.82; N, 15.27. ¹H NMR (CD_3CN), δ : 4.05 (2 H, $\text{CF}(\text{NO}_2)\text{CH}_2\text{OH}$, AB is the portion of the ABX spectrum); 4.30 (2 H, $\text{OCH}_2\text{CF}(\text{NO}_2)$, AB is the portion of the ABX spectrum); 4.65 (br.s, H, OH); 4.85 (CH_2 , $\text{CF}(\text{NO}_2)\text{CH}_2\text{O}$, AB is the portion of the ABX spectrum). IR, ν/cm^{-1} : 764 (NO_2); 800, 851 (C—N); 1067 (C—OH overlaps with C—F); 1148 (C—O); 1313, 1547 (NO_2 from $\text{CF}(\text{NO}_2)$); 1604 (NO_2) from $\text{FC}(\text{NO}_2)_2$; 2925, 2946 (CH_2), 3416, 3579 (OH).

The corresponding acetate (colorless oil, n_{D}^{20} 1.4420, purity 99.5 % (GLC)) was obtained upon treatment of ether 5

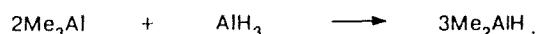
with acetyl chloride in a yield of 93 %. ¹H NMR (CD_3CN), δ : 2.03 (s, 3 H, CH_3); 4.4 (2 H, $\text{OCH}_2\text{CF}(\text{NO}_2)$, AB is the portion of the ABX spectrum); 4.65 (2 H, $\text{CF}(\text{NO}_2)\text{CH}_2\text{OCO}$, AB is the portion of the ABX spectrum); 4.85 (2 H, $\text{CF}(\text{NO}_2)_2\text{CH}_2$, AB is the ABX spectrum). All spectra of the ABX type exhibit strong interactions, $\Delta\nu$, and J were not determined.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 94-03-08680).

References

1. B. S. Fedorov, M. A. Fadeev, V. V. Arakcheeva, L. S. Baranova, and L. T. Eremenko, *Izv. Akad. Nauk, Ser. Khim.*, 1996, 392 [*Russ. Chem. Bull.*, 1996, **45**, 376 (Engl. Transl.)].
2. H. G. Adolph, U.S. Pat. 3 531 534, 1970.

Received December 22, 1995


Preparative synthesis of dimethylaluminum hydride

N. N. Govorov,* P. A. Storozhenko, and N. N. Korneev

State Research Center of the Russian Federation "State Scientific and Research Institute for Chemistry and Technology of Organoelement Compounds", 38 sh. Entuziastov, 111123 Moscow, Russian Federation.
Fax: +7 (095) 273 1323

Methylaluminoxanes (MAO) are widely used for polymerization of olefins.^{1,2} The synthesis of MAO by the incomplete hydrolysis of Me_3Al is complicated by the formation of $\text{Al}(\text{OH})_3$, instability of the composition and the structure of MAO, etc.³ It is conceivable that the substitution of Me_2AlH for Me_3Al could result in controlled hydrolysis because of the insignificant difference in bond activity of $\text{Al}-\text{C}$ and $\text{Al}-\text{H}$.

Since the known procedures for the synthesis of Me_2AlH make it difficult to isolate the target product in preparative amounts, we elaborated a simple method for the synthesis of Me_2AlH from Me_3Al and crystalline AlH_3 , following the reaction:

The synthesis of nonsolvated AlH_3 free from organic admixtures was carried out through the crystallization of AlH_3 from an ether—toluene solution followed by the elimination of ether according the known procedure.⁵

The synthesis of Me_2AlH from crystalline AlH_3 . A suspension of AlH_3 (6.5 g, 0.217 mol) in AlMe_3 (28.6 g, 0.397 mol) was stirred at 120–126 °C (Ar) for 0.5 h. Distillation from the same flask (air condenser, distillation "pig", receiving vessels) yielded Me_2AlH (26.5 g, 74 %), b.p. ~90 °C (70–90 Torr). (Me_2AlH becomes glass-like at ~20 °C, taking on sufficient mobility at ~90 °C, which determined the distillation conditions). During the distillation, Me_2AlH decomposed partially to metallic Al. A condensate solidified on the walls of the condenser and distillation "pig" and did not get to the receiving vessels. The distillation at atmospheric pressure is accompanied by considerable decomposition. Me_2AlH was obtained in a <60 % yield, b.p. 152–154 °C (cf. Ref. 4).

References

1. Kh. G. Al't, *Izv. Akad. Nauk, Ser. Khim.*, 1995, 7 [*Russ. Chem. Bull.*, 1995, **44**, 1 (Engl. Transl.)].
2. E. A. Fushman, A. D. Margolin, S. S. Lalayan, and V. E. L'vovskii, *Vysokomol. Soedin.*, 1995, **37B**, 1589 [*Polym. Sci. USSR*, 1995, **37B** (Engl. Transl.)].
3. N. N. Korneev and I. M. Krapova, *Khimiya organoalumoksanov* [*Chemistry of Organoalumoxanes*], NIITEKhIM/ГНИИKhTEOS, Moscow, 1984, 52 pp. (in Russian).

4. N. M. Alpatova, V. V. Gavrilenko, Yu. M. Kessler, O. R. Osipov, and D. N. Maslin, *Kompleksy metalloorganicheskikh, hidridnykh i galoidnykh soedinenii aliuminiya* [Complexes of Organometallic, Hydride, and Halide Compounds of Aluminum], Nauka, Moscow, 1970, 296 pp. (in Russian).

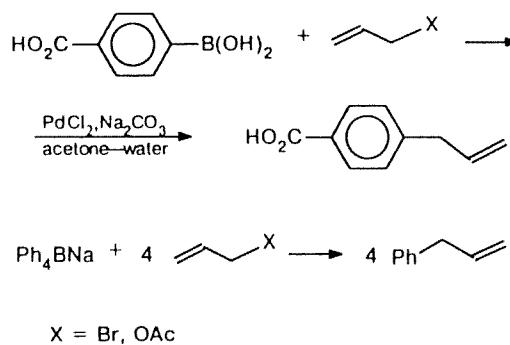
5. F. M. Brower, N. E. Matzec, and Reigler, *J. Am. Chem. Soc.*, 1976, **98**, 2450.

Received February 2, 1996

Allyldeboration of organoboron compounds in aqueous media catalyzed by "ligandless" palladium

V. V. Bykov,^a A. A. Kir'yanov,^b N. A. Bumagin,^{a*} and I. P. Beletskaya^a

^aDepartment of Chemistry, M. V. Lomonosov Moscow State University, 119899 Moscow, Vrob'evy Gory, Russian Federation.


Fax: +7 (095) 939 0126

^bScientific and Research Institute of Fine Organic Synthesis, 75 ul. Ul'yanovskikh, 450029 Ufa, Russian Federation.

Fax: +7 (342 2) 43 1256

Reactions of allyl electrophilic agents with organoboron compounds, which are catalyzed by palladium or nickel complexes, are an important method of forming a new carbon–carbon bond.^{1–4} They are usually carried out in an organic solvent with long heating.

We found that allyldeboration of organoboron compounds in aqueous acetone proceeded under very mild conditions at a high rate if "ligandless" palladium⁵ was used as a catalyst. $PdCl_2$ was the source of this catalyst. The reaction of allyl bromide with 4-carboxyphenylboronic acid and sodium tetraphenylborate proceeds at room temperature for 3–6 h, resulting in high yields of 4-allylbenzoic acid (80 %) and allylbenzene (75 %). When less active allylacetate is used, the reaction proceeds at 56 °C for 2–3 h to give the products of allyldeboration in quantitative yields.

It should be noted that all four phenyl groups in Ph_4BNa participate in the reaction with both allyl bromide and allyl acetate.

A 0.1 M aqueous solution of $PdCl_2$ (0.1 mL, 0.01 mmol) was added under argon to a mixture of a 1.7 M aqueous solution of Na_2CO_3 (1.77 mL, 3 mmol), acetone (5.3 mL), allyl bromide (0.087 mL, 0.121 g, 1 mmol), and 4-carboxyphenylboronic acid (0.166 g, 1 mmol). The mixture obtained was stirred at ~20 °C for 6 h, and then diluted with water (75 mL) and filtered. The filtrate was cooled to 0 °C and acidified with HCl. The precipitate that formed was filtered off, washed with water, and dried *in vacuo* over P_2O_5 . 4-Allylbenzoic acid (0.1255 g, 80 %) was obtained, m.p. 104–105 °C (cf. Ref. 6: 104–105 °C). 1H NMR (400 MHz, $(CD_3)_2CO$), δ : 3.46 (d, 2 H, $J = 6.4$ Hz); 5.02–5.14 (m, 2 H); 5.92–6.4 (m, 1 H); 7.33 (d, 2 H, $J = 8.0$ Hz); 7.97 (d, 2 H, $J = 8.0$ Hz).

References

1. N. Miyaura, T. Yano, and A. Suzuki, *Tetrahedron Lett.*, 1980, **21**, 2865.
2. N. Miyaura, K. Yamada, H. Sugimoto, and A. Suzuki, *J. Am. Chem. Soc.*, 1985, **107**, 972.
3. J.-Y. Legros and J.-C. Fland, *Tetrahedron Lett.*, 1980, **31**, 7453.
4. M. Moreno-Manas, F. Pajuelo, and R. Pleixats, *J. Org. Chem.*, 1995, **60**, 2396.
5. N. A. Bumagin, I. G. Bumagina, and I. P. Beletskaya, *Dokl. Akad. Nauk SSSR*, 1984, **274**, 1103 [*Dokl. Chem.*, 1984, **274** (Engl. Transl.)].
6. M. R. Quelet, *Bull. Soc. Chim. France*, 1929, **45**, 255.

Received February 16, 1996